

Key drivers for autonomy: Long Round-Trip Light Time

Key drivers for autonomy: Unpredictable Environments

Key drivers for autonomy: Contact Investigations

Curiosity Rover

Cameras	 Mast Camera (Mastcam) Mars Hand Lens Imager (MAHLI) Mars Descent Imager (MARDI)
Spectrometers	 Alpha Particle X-Ray Spectrometer (APXS) Chemistry & Camera (ChemCam)
Analytical Instruments	 Chemistry & Mineralogy X-Ray Diffraction/X-Ray Fluorescence Instrument (CheMin) Sample Analysis at Mars (SAM) Instrument Suite
Radiation Detectors	Radiation Assessment Detector (RAD)Dynamic Albedo of Neutrons (DAN)
Environmental Sensors	 Rover Environmental Monitoring Station (REMS)
Atmospheric Sensors	 Mars Science Laboratory Entry Descent and Landing Instrument (MEDLI)

Autonomy for Landing

Rover Operations: Sol by Sol...

Rover Navigation

AutoNav

Visual Odometry

Challenging Terrain...

Intelligent Science Acquisition

- AEGIS = "Autonomous Exploration for Gathering Increased Science
 - Currently supporting autonomous targeting of Curiosity ChemCam instrument

POC: Tara Estlin/JPL

Mars 2020 Rover

Improved Landing: Terrain-Relative Navigation

Mars Sample Return – Notional Architecture

Mars 2020

- Select & Acquire Samples
- Deposit samples for future retrieval

Sample tube on Mars surface

MSR-Lander Concept

- Small Fetch Rover to Retrieve Samples
- Small MAV on Fixed Platform
- Launch Samples from Mars Surface to ~500km Orbit

Orbiting
Sample
(OS)
canister in
Mars orbit

MSR-Orbiter Concept

- Rendezvous & Sample Containment
- Return to Earth
- Earth Entry Vehicle

Sample returned to earth

Rapelling Rover Concepts for Extreme Terrain Access

